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ABSTRACT
Hematopoietic stem cells (HSC) are maintained in a tightly regulated bone microenvironment constituted by a rich milieu of cells. Bone cells

such as osteoblasts are associated with niche maintenance as regulators of the endosteal microenvironment. Bone remodeling also plays a role

in HSC mobilization although it is poorly defined. The effects of zoledronic acid (ZA), a potent bisphosphonate that inhibits bone resorption,

were investigated on bone marrow cell populations focusing on HSCs, and the endosteal and vascular niches in bone. ZA treatment

significantly increased bone volume and HSCs in both young and adult mice (4 week and 4 month old, respectively). ZA increased vessel

numbers with no overall change in vascular volume in bones of young and had no effect on vasculature in adult mice. Since both young and

adult mice had increased HSCs and bone mass with differing vasculature responses, this suggests that ZA indirectly supports HSCs via the

osteoblastic niche and not the vascular niche. Additionally, gene expression in Lin- cells demonstrated increased expression of self-renewal-

related genes Bmi1 and Ink4a suggesting a role of ZA in the modulation of cell commitment and differentiation toward a long-term self-

renewing cell. Genes that support the osteoblastic niche, BMP2 and BMP6were also augmented in ZA treatedmice. In conclusion, ZA-induced

HSC expansion occurs independent of the vascular niche via indirect modulation of the osteoblastic niche. J. Cell. Biochem. 114: 67–78,

2013. � 2012 Wiley Periodicals, Inc.
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B one is an important hematopoietic organ tightly regulated by

the diverse cellular components that constitute its microen-

vironment. This unique microenvironment, also known as the stem

cell niche, maintains and regulates hematopoietic stem cells (HSCs).

HSCs are found in close association with the endosteal interface of

bone and bone marrow, and perivascular sinusoidal blood vessels

[Kiel et al., 2005; Adams et al., 2006]. Osteoblasts, endothelial cells,

adipocytes and stromal cells are key cells that constitute the

niche and participate in the regulation and maintenance of HSCs

[Bianco, 2011]. The hematopoietic niche is necessary to balance the

expansion and mobilization of HSCs to the peripheral blood as

well as the regulation of self-renewal capacity and hematopoietic

commitment to differentiation. Moreover, the bone microenviron-

ment plays an important role in this regulation. For instance, studies

have demonstrated that increased osteoblast number augments HSC

numbers in bone marrow [Calvi et al., 2003; Zhang et al., 2003]

whereas, osteoblast depletion leads to a reduction in HSC numbers

[Visnjic et al., 2004]. It is not well defined whether enrichment of

bone structures such as vasculature or the endosteum can alter the

HSC pool in bone marrow. In this context, therapies that involve
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modulation of bone formation or remodeling may affect HSC

expansion and mobilization.

Osteoclasts are believed to play a role in the bone microenviron-

ment and consequently affect the HSC microenvironment. For

instance, osteoclast-induced bone resorption is responsible for the

release of various growth factors, proteins, and bone mineral such as

calcium, all of which are known to influence in the hematopoietic

cells and niche maintenance and mobilization [Adams et al., 2006;

Kollet et al., 2006]. Still, the precise role of osteoclasts in HSC niche

maintenance and mobilization is ill defined and controversial.

Although augmented osteoclast activation results in increased

stress-induced mobilization of HSCs [Cho et al., 2010], osteopetrotic

animal models and pharmacological strategies of osteoclast

inhibition resulted in increased mobilization of HSCs in response

to G-CSF stimulation [Miyamoto et al., 2011].

Pharmacologic strategies such as bisphosphonates inhibit

osteoclast-mediated bone resorption. Zoledronic acid (ZA) is a

potent third generation bisphosphonate utilized for treatment of

metabolic bone diseases such as osteoporosis, Paget’s disease and

cancer-related bone diseases. The high affinity for hydroxyapatite

results in accumulation in bone that when it is resorbed by

osteoclasts inhibition of the mevalonate pathway and apoptotic cell

death occurs [Rodan and Fleisch, 1996; Winter and Coleman, 2009].

However, the mechanisms of which osteoclast inhibition affects the

HSC niche and progenitor cells expansion are yet unclear.

It was hypothesized that osteoclasts may play an important role in

hematopoiesis in the bone marrow. In this study, mice were treated

with ZA, and HSCs in bone analyzed. Altogether, the treatment

differential response in the different hematopoietic progenitor and

stem cells suggests that osteoclast inhibition and changes in the

bone microstructure may play a role in the increased hematopoietic

stem cells in the bone marrow.

MATERIALS AND METHODS

TREATMENT WITH ZOLEDRONIC ACID (ZA)

All animals were maintained in accordance with institutional

animal care and use guidelines and experimental protocols

approved by the Institutional Animal Care and Use Committee of

the University of Michigan. Male C57BL/6J mice at 4- or 16-weeks

of age were obtained from the Jackson Laboratory (Bar Harbor, ME).

Intraperitoneal injections were performed twice/week with 200mg/kg

of ZA (Zometa, Novartis, Stein, Switzerland) or vehicle (saline) for

up to 4 weeks. At sacrifice, blood and hind limbs were collected for

analyses.

FLOW CYTOMETRY ANALYSIS (FACS)

One femur and one tibia were collected and flushed with FACS

buffer (PBS, 1%FBS, 2 nM EDTA). The enriched central bone marrow

cells were filtered through a 100mm cell strainer and cells were

enumerated and resuspended to a total of 5million cells/500mL. Lin

cocktail (APC), Sca-1 (E13-161.7, PE), c-kit (2B8, FITC) antibodies

were used to quantify the Lin-Sca1þc-Kitþ cells. To evaluate the

SLAM population (CD48� CD41� CD150þ Sca1þ c-kitþ) cells were
incubated with the antibodies Sca-1 (E13-161.7, biotin), c-kit (2B8,

APC), CD48 (HM48-1, FITC), and CD41 (MWReg30, FITC),

CD150(TC15-12F12.2, PE-Biolegend). For the long-term reconsti-

tution assay analysis, peripheral blood cells were stained with CD3,

CD5, B220 (Ra3-6B2, PE). Endothelial progenitor cells (EPC) were

identified as CD11b� (M1/70, APC) CD34þ (RAM34, FITC-

eBioscience) and Flt1þ(Avas12a1, PE-eBioscience) cells. After

antibody incubation cells were washed twice with PBS and

evaluated with a FACsCalibur (BD Bioscience, San Jose, CA). All

other antibodies used for flow cytometry were purchased from BD

Bioscience.

LONG-TERM COMPETITIVE RECONSTITUTION ASSAYS

For in vivo enumeration of HSCs, 300,000 CD45.2 bonemarrow cells

were isolated from ZA-treated and untreated C57BL/6mice and were

mixed with 300,000 CD45.1 cells from CD45.1 congenic mice. Cells

were then intravenously injected into CD 45.2/CD45.1 recipient mice

that had been lethally irradiated with 850 cGy of irradiation. Four

weeks after transplantation, the frequency of the different cell

populations were determined in the peripheral blood (PB) by

fluorescence-activated cell sorting (FACS) using PE-CD45.1 and

FITC-CD45.2 antibodies (BD Pharmingen) over a 3 month period.

HISTOLOGY AND IMMUNOHISTOCHEMISTRY

After 4 weeks of treatment, mice were sacrificed and tibiae were

collected and fixed in 10% formalin. Decalcification was performed

in 10% EDTA for 14 days prior to paraffin embedding. Paraffin-

embedded specimens were sectioned at 5mm and stained with

hematoxylin and eosin (H&E), or tartrate-resistant acid phosphatase

(TRAP) to detect osteoclasts (Acid Phosphatase, Leukocyte Kit,

Sigma, St. Louis, MO) or with Von Willebrand factor (vWF) to

identify vascular spaces. For microvessel density (MVD) analysis,

after vWF staining, four random areas were selected. Any single or

cluster of positively stained endothelial cells that was clearly

separated from adjacent microvessels was considered as one

countable microvessel. The average MVD was determined for

each specimen. Mayer’s hematoxylin (Sigma) was used for

counterstaining.

RNA ISOLATION AND QUANTITATIVE PCR ASSAY

One tibia and femur were flushed with PBS and cells were sorted into

Lin�, Linþ using magnetic cell sorting microbeads (MACS). After

sorting, cells were pelleted and RNA was isolated with Tri reagent

(Sigma) following the manufacturer’s protocols. One microgram of

total RNA was reverse transcribed in a 20-mL reaction volume

containing random hexamers using a reverse-transcription assay

system (Applied Biosystems, Foster City, CA). Quantitative reverse

transcription-PCR (RT-PCR) was performed using the ABI PRISM

7700 with a ready-to-use mix of primers and FAM-labeled probe

assay system (Applied Biosystems). Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) was used as a reference and the delta delta

CT method were used to calculate the data.

SERUM TRAP5b AND CALCIUM MEASUREMENT

Serum TRAP5b activity was measured by ELISA (Immunodiagnostic

Systems, Inc.) following the manufacturer’s instructions. A

quantitative colorimetric assay with Calcium Reagent Set (Pointe
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Scientific, Inc., Canton, MI) was used to measure the total calcium

levels in serum and bone marrow supernatants.

MIROFIL AND MICRO CT ANALYSES

A perfusion technique using the radiopaque silicone rubber

injection agent Microfil TM followed by microCT analysis was

utilized as previously described [Guldberg et al., 2008; Park et al.,

2012]. Briefly, mice treated with vehicle or zoledronic acid for

4 weeks were anesthetized and perfused with lactated Ringer’s

solution containing heparin, followed by 10% neutral buffered

formalin, and then with a MicrofilTM compound of 1.04 specific

gravity mixed 4:1 with a 0.92 specific gravity diluent. Femora,

tibiae, and spleens were dissected, and bones were fixed and

decalcified. Samples were scanned in air at a 7 um voxel size by

microcomputed tomography (eXplore Locus SP (GE Healthcare Pre-

Clinical Imaging, London, ON, Canada). Regions of interest were

defined for both central bone vascularity and vascular regions near

the growth plate, and quantitative differences in vessel numbers and

sizes were determined using the stereology package of commercially

available software (MicroView v2.2, GE Healthcare Pre-Clinical

Imaging, London, ON, Canada).

STATISTICAL ANALYSIS

The GraphPad Instat 3 software program (GraphPad Software, San

Diego, CA) was used to analyze the differences by one-way ANOVA

or Student’s t-test for independent analysis. The value P< 0.05 was

considered statistically significant. All assays were repeated at least

twice with similar results.

RESULTS

ZA TREATMENT INCREASED BONE AREA AND OSTEOCLAST

ACTIVITY IN YOUNG MICE

To elucidate the role of osteoclasts in the bonemicroenvironment, 4-

week-old mice were treated with vehicle (saline) or zoledronic acid

(ZA) twice a week for 4 weeks. As expected, ZA treated mice had

increased bone volume, increased trabecular thickness and number,

and decreased trabecular spacing (Fig. 1 A–D). Serum tartrate-

resistant acid phosphatase 5b (TRACP 5b) serum levels were

decreased (Fig. 1E) as well as osteoclast numbers in marrow

following ZA treatment (Fig. 1F). ZA treatment decreased the

calcium levels in the bone marrow (Fig. 1G) but did not alter serum

calcium levels (Fig. 1H) as previously reported [Li et al., 2011].

Altogether, the inhibition of osteoclasts by ZA resulted in increased

bone mass.

HEMATOPOIETIC PROGENITOR CELLS WERE INCREASED AFTER

ZA TREATMENT

To investigate the effects of osteoclast inhibition on hematopoiesis,

mice were treated with ZA or vehicle for 4 weeks and the bone

marrow cells were analyzed by FACS at different time points.

Hematopoietic progenitor cells (Lin�Sca-1þc-kitþreferred to as LSK)
were significantly increased when compared to the vehicle treated

mice (Fig. 2A). Since hematopoietic progenitor cells were increased

the long-term reconstitution hematopoietic stem cells were also

analyzed using the SLAM markers (CD48�CD41�CD150þSca1þ

c-Kitþ) as previously described [Kiel et al., 2005]. As was observed

with the number of LSK cells following ZA treatment, a trend of

increased SLAM cells was observed with ZA treatment although it

did not reach statistical significance (P¼ 0.056; Fig. 2B).

LONG-TERM RECONSTITUTION OF LYMPHOID CELLS WAS HIGHER

IN ZA TREATED MICE

Since hematopoietic cells bearing the LSK and SLAM phenotype

were increased in mice treated with ZA, their capacity for long term

reconstitution was analyzed. Bone marrow cells were collected

from isogenic CD45.1 mice treated with ZA or vehicle and mixed

with CD45.2 donor cells at equal cell numbers (Fig. 3A). Cells were

transplanted into recipient mice (CD45.2) that had received lethal

irradiation and engraftment of the CD45.1 donor cells was

monitored in blood over a 3 month period. Lymphoid cells were

increased in mice treated with ZA with higher B and T lymphocytes

(Fig. 3B,C). There were no differences in the myeloid cell populations

(Fig. 3D).

Collectively the data show that HSCs are increased in the marrow

following ZA treatment. To explore the mechanisms which could

account for these data, three potential pathways which could lead

to increased HSCs were explored: (1) ZA reduced hematopoietic

stem cell egress or mobilization from the marrow and subsequent

retention of the cells in the bone marrow, (2) ZA increased endosteal

or vascular niches allowing for greater localization of HPCs/HSCs, or

(3) ZA altered stem cell composition and differentiation.

HEMATOPOIETIC STEM CELL MOBILIZATION

To determine the extent to which ZA alters HSC egress or

mobilization from the marrow, peripheral blood and spleens were

analyzed by FACS in mice treated with ZA or vehicle. As a result of

the ZA treatment, LSK numbers in the peripheral blood were not

altered (Fig. 4A). No correlation was seen between LSK numbers in

bone marrow and peripheral blood (data not shown). To investigate

whether ZA has an effect on HSC mobilization or extramedullary

hematopoiesis, the spleens of vehicle or ZA treated animals were

analyzed. Spleen weight/body weight and LSK numbers in mice with

ZA or vehicle were not significantly different (Fig. 4B,C). Altogether,

these data suggest that increased LSKs in the bone marrow were not

due to mobilization effects in mice treated with ZA.

ENDOSTEAL AND VASCULAR NICHES

The hematopoietic niche is formed in the bone marrow by

hematopoietic and non-hematopoietic cells and localized in the

endosteum (area between bone marrow and bone) and sinusoids.

ZA increases bone mass and thus provides an increase in niches

to support HSCs. Interestingly, we observed in the bone sections of

mice that augmented trabecular bone was also followed by increased

small vessels number in 4 week old mice (Fig. 5A). Therefore,

changes in the vasculature of bone in mice treated with ZA or

vehicle for 4 weeks were examined. Radiopaque silicone rubber

agent MicrofilTM was perfused intravenously and micro CT analysis

of vascular spaces was performed (Fig. 5B–F). Although the overall

vessel volume fraction was not affected (Fig. 5C), ZA treated mice

had reduced vessel thickness (Fig. 5D) and increased vessel numbers

(Fig. 5E). In addition, bone sections were stained for VonWillebrand
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factor (vWF) and vessel numbers were quantified (Fig. 5G).

Consistent with the Micro CT analyses, vessel number was increased

with ZA treatment.

HEMATOPOIETIC CELL COMPOSITION

The changes seen in the hematopoietic progenitor cell populations

could also be due to changes in the hematopoietic composition of

the bone marrow. To assess whether ZA affected the mature

hematopoietic composition, bone marrow was analyzed for CD41þ

cells by FACS and no significant changes were observed (Fig. 6A). In

addition, peripheral blood cell count was performed and there was

no alteration in the white and red blood cells or platelets (Fig. 6B).

The other possibility could be that zoledronic acid induced

changes in the bone could be affecting the hematopoietic stem cell

differentiation into progenitor cells. Thus, we decided to further

investigate the constitution of the HSC population. Stem cells are

classified according to their repopulation capacity into long-term

HSCs (LT-HSC) and short-term HSCs (ST-HSCs). The LT-HSCs are

Fig. 1. ZA treatment effects on bone area and osteoclast activity. Four-week-old C57BL/6J male mice were treated with 200mg/kg of ZA twice/week for 4 weeks. A–D: ZA

treatment increased bone area. (A–D) Histomorphometric analysis of tibiae shows an increase of bone volume (BV/TV %), trabecular thickness (Tb Th, mm) and

number(Tb number mm�1), and decreased trabecular spacing (Tb Sp,) in tibiae from ZA treated mice versus vehicle (VEH); E: blood serum TRAP5b levels were reduced

with ZA treatment; F: representative TRAP staining of tibia; G–H: bone marrow calcium levels were decreased and serum calcium levels were not changed; Calcium levels were

measured in the bone marrow (G) and serum (H) of mice treated with ZA or vehicle for up to 4 weeks; (T/C) Treatment/control (�P< 0.05; ��P< 0.01; ���P< 0.005 versus vehicle

[VEH]). Data are presented as mean� SEM, n¼ 8/gp (A–E, G–H).
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stem cells that present extensive life long, self-renewing potential

and are capable of repopulating the whole hematopoietic system. In

contrast, ST-HSCs have a lower self-renewing capacity but a rapid

capability of myeloerythroid cell repopulation [Yang et al., 2005].

They can be identified according to the expression of cytokine

polypeptide deformylase (fms)—like tyrosine kinase receptor 3

(Flt3): long-term-HSCs are LSK CD34�Flt3� and short-term-HSCs

(LSK CD34þ) can be further divided into two subsets. ST-HSCs Flt3þ

for cells with great lymphoid reconstitution and ST-HSCs Flt3� for

rapid myelopoiesis. Because increased LSK numbers were observed,

Fig. 2. ZA treatment increased LSK population but not long-term hematopoietic stem cells. Mice were treated with 200mg/kg of ZA twice/week for 4 weeks and bone marrow

cells were analyzed by flow cytometry. A: ZA treatment increased bone marrow Lin�Sca1þ c-Kitþ hematopoietic progenitor cells after 4 weeks of treatment versus vehicle (VEH)

control. B: ZA treatment did not affect the long-term hematopoietic stem populations as identified using SLAM markers (CD48�CD41�CD150þSca1þc-Kitþ; �P< 0.005) T/

C¼ treatment/control. Data are presented as mean� SEM, n¼ 5/gp.

Fig. 3. Long-term HSC reconstitution was increased in ZA treated bone marrow cells. Donor CD45.1 mice were treated for 4 weeks with ZA or vehicle (VEH). Bone marrow cells

were collected and mixed with rescue donor CD45.2 bone marrow cells. Mixed cells were injected intravenously in irradiated recipient mice, and blood cells were collected and

analyzed by flow cytometry as indicated for CD45.1 positive and (A) B cells (B220), (B) T-cells (CD3), and (C) myeloid cells (Gr-1). Zoledronic acid treated mice had increased

reconstitution of the B and T cell populations but no altered reconstitution of the myeloid Gr-1 population (��P< 0.01, �P< 0.05). Data are presented as mean� SEM, n¼ 10.
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we investigated the differentiation stage of the LSK population.

Indeed LSK Flt3þ (ST-HSCs) were increased with ZA treatment

(Fig. 6C) suggesting that cells with great lymphoid reconstitution are

augmented by ZA induced changes in the bone microenvironment,

as seen in the long term reconstitution assay (Fig. 3B,C).

To investigate whether ZA influenced bone angiogenesis, we

also measured endothelial progenitor cells (EPCs) by FACS in both

bone and peripheral blood (Fig. 6D,E). ZA treatment significantly

decreased CD11b� CD34þ Flt1þ EPCS at 3 weeks only but at 4 weeks

no difference was seen (Fig. 6D) in bone or in the peripheral blood

(Fig. 6E).

GENE EXPRESSION ANALYSES

To further confirm the HSC population commitment, bone marrow

cells were sorted into Lin� or Linþ cells and gene expression of

hematopoietic related genes were analyzed. Lineage negative cells

had increased expression of BMP2, BMP6, Bmi1, Tie2, Notch1, but

no change in Ink4a, in mice treated with ZA (Fig. 7A). BMP2 and

BMP6 are proteins known to support endosteal niche maintenance,

suggesting an active participation of HSCs in the endosteal niche.

Bmi1, Ink4a, and Tie2 genes are indicators of self-renewal capacity

[Park et al., 2003]. Bmi1 is required for HSC self-renewal since

Bmi1�/� mice have normal HSCs in fetal liver but decreased HSC

numbers in postnatal mice. p16Ink4a is downstream of Bmi1 and

participates in the regulation of HSC proliferation [Smith et al.,

2003].

Because ZA may affect the calcium resource in bone due to the

inhibition of bone resorption we also investigated calcium related

genes in linage negative cells and found calmodulin 1 (Cam1) and

calcium chloride channel (ClCa1) were decreased with ZA treatment

(Fig. 7B).

Linage positive cells had decreased gene expression for BMP6 but

no significant changes were observed in Bmi1, Tie2, Notch1, Ink4a,

and Flt3 (Fig. 7C). Total bone marrow cells had decreased gene

expression of osteocalcin (OCN) and vascular cell adhesion molecule

1 (VCAM1) genes (Fig. 7D). Altogether, the increased LSK population

may be in part due to increased self-renewal capacity and

suppression of linage commitment towards short-term hematopoi-

etic stem cells.

ADULT MODEL VASCULATURE AND HSCS

Because the experiments were performed in 4-week-old mice that

are in an active phase of growth and high bone activity, adult mice

were also investigated. Four-month-old mice were treated with ZA

or vehicle for 4 weeks and same analyses were performed. LSK

numbers were again increased in ZA treated mice (Fig. 8A). Micro CT

analyses of Microfil perfused mice presented no changes in vessel

volume, thickness or number, suggesting that increased LSK

numbers in 4-month-old mice were not due to increased vascular

niches (Fig. 8B–G).

DISCUSSION

In this study, treatment with ZA in both young and adult mice

significantly increased the hematopoietic progenitor population

(LSK) in the bone marrow. The augmented LSK population was

confirmed functionally by long term reconstitution assays showing

increased repopulation of B and T lymphocytes in mice that received

bone marrow stromal cells from donor mice treated with ZA. One

interesting finding was that reconstitution of Gr-1þ population

that accounts for myeloid cells was not different. A recent study

demonstrated that TGF-b1 can regulate the hematopoietic stem cell

long–term differentiation. High levels of TGF-b1 resulted in

stimulation of myeloid-biased HSCs and inhibition of lymphoid-

biased HSCs [Challen et al., 2010]. ZA is known to inhibit bone

resorption and consequently reduce the release of TGF-b1 from

resorbed bone[Wu et al., 2010]. Accordingly, with ZA treatment an

increased reconstitution of lymphocyte B and T cells were observed

but not the myeloid population suggesting that low TGF-b1 could be

modulating the reconstitution of these cells in the bone marrow.

Moreover, ZA treatment increased the LSK Flt3þ population that are

Fig. 4. Bone marrow HSC mobilization. ZA did not alter the LSK population in the blood or spleen. Four-week-old C57BL/6J male mice were treated with 200mg/kg of ZA

twice/week for 4 weeks, and peripheral blood and spleens were analyzed. A: Flow cytometry analyses of LSK population in the peripheral blood; B,C: spleen cells were

collected and LSK population was analyzed by flow cytometry (B); spleen weight/body weight were analyzed and no changes were observed (C). Data are presented as

mean� SEM, n¼ 10/gp (A), n¼ 8/gp (B,C).
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known to be short term lymphocytic reconstituting cells, confirming

an effect of ZA in hematopoietic reconstitution.

Since LSK cells were increased in ZA treated mice, 3 potential

hypotheses were investigated; (1) mobilization of LSK in the bone

marrow, (2) increased bone marrow niches supporting increased

numbers of LSKs, and (3) altered cell composition and stem cell

differentiation.

Mobilization depends on detachment of HSCs from their niches

concomitantly with cellular migration and egress from bonemarrow

to the circulation. Mobilization strategies have been used clinically

to collect a large number of hematopoietic stem cells from the

blood, a less invasive procedure than bone marrow aspiration for

transplantation. Regulation of the bone microenvironment and the

niches present in the marrow are important to preserve HSCs and

therapies that interfere in this balance can affect the stem cell pool.

Based on our findings, mobilization of LSKs in ZA treated mice was

not altered since the LSK population was unchanged in the

peripheral blood as well as the spleens. No difference was seen in

Fig. 5. Effects of ZA on bone and vasculature. ZA did not alter vessel volume but increased vessel numbers in 4-week-old mice treated with ZA or vehicle (VEH) for 4 weeks.

A: H&E staining of mice treated with vehicle or ZA shows an increase of vessels in the trabecular area of mice tibiae; B–F: mice were perfused with radiopaque silicone rubber

microfil and tibiae were analyzed by micro CT; (B) Representative micro CT image of bones with microfil perfusion; C–F: MicroCT analysis of microfil for vessel volume/tissue

volume (VV/TV%), thickness (V Th, mm), numbers (VN, mm�1), and spacing (VS, mm). ZA treatment decreased vessel thickness and increased vessel numbers; G: tibiae sections

were stained for Von Willebrand factor (V) and vessel numbers were quantified (�P< 0.05, ��P< 0.01, ���P< 0.005). Data are presented as mean� SEM, n¼ 10/gp.
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white and red blood count or in the platelet numbers in peripheral

blood. Studies demonstrated that bone remodeling is altered when

HSC mobilization is induced by granulocyte-colony stimulating

factor (G-CSF) treatment with decreased bone volume [Lee et al.,

1991; Takahashi et al., 1996]. Therefore, bone activity is closely

associated with HSC commitment for mobilization and differentia-

tion with egress of HSCs from the bone marrow. Interestingly ZA

inhibits osteoclast function and subsequently results in increased

bone volume, an opposite effect seen in G-CSF therapies.

Since ZA treatment did not stimulate the egress of LSKs from the

bone marrow to the circulation two other questions were addressed.

First was whether ZA promotion of LSK increase is due to

hematopoietic niche alteration and secondly, whether ZA regulates

the factors necessary for the retention of HSCs with modulation of

cell commitment. ZA is a bisphosphonate clinically utilized for the

treatment of bone associated diseases such as osteosporosis and

skeletal malignancies due to its inhibitory actions in osteoclast

mediated bone resorption. ZA actions in bone were confirmed by

histomorphometric analyses of bone sections demonstrating a

significant increase bone mass and decrease in osteoclast activity.

Hematopoietic niches maintain self-renewing and dormant HSCs in

the bone marrow and although still controversial, HSCs are believed

to reside in association with bone locals termed endosteal niches and

surrounding sinusoids present in the marrow, known as vascular

niches. It was also proposed that the distinct niches have different

functionalities: the endosteal niche homes and maintains long-term

HSCs and the vascular niche is involved in the short term HSC

maintenance, promoting the differentiation and circulation of HSCs

[Grassinger et al., 2010]. However, to fully differentiate both niches

is difficult due to the close association of the vasculature especially

in trabecular bone rich areas, locations where HSCs preferentially

lodge [Ellis et al., 2011]. An increase in the osteoblastic niche could

account for the augmented LSK population, especially for the long-

term LSKs that were modestly increased after ZA treatment using the

SLAM markers.

Bisphosphonates are being studied for their activities not only in

the bone microenvironment but also putative direct effects in tumor

cell proliferation, adhesion, invasion, apoptosis, and angiogenesis

[Rogers and Holen, 2011]. The anti-angiogenic effects of ZA have

been demonstrated by its actions as a potent inhibitor of endothelial

cell proliferation, adhesion migration and angiogenesis [Wood et al.,

2002; Metcalf et al., 2011]. However, ZA effects in bone vasculature

are still poorly defined. Bone vascular biology is an understudied

area and the interdependency of vascular physiology and

Fig. 6. Effects of ZA on hematopoietic cell composition. To investigate the effects of ZA on hematopoiesis and progenitor cells, bone marrow and blood cells of 4-week-old

mice were analyzed; A: no alteration in the bone marrow CD41þmature hematopoietic composition with ZA treatment versus vehicle(VEH) control; B: blood cell count of white

blood cells (WBC), red blood cells (RBC), and platelets (PLT) were not altered with ZA treatment; C: sixteen-week-old mice were treated with ZA or vehicle (VEH) for 4 weeks and

bone marrow cells were collected and LSK Flt3þ and Flt3�were analyzed by flow cytometry. D–E: Endothelial progenitor cells (CD11b� CD34þ Flt3þ) were analyzed over time to

investigate the effects of ZA in bone marrow and mobilization to the peripheral blood; (D) EPCs in the bone marrow were significantly decreased at 3 weeks of ZA treatment but

not significantly different at 4 weeks; (E) EPCs in the peripheral blood were not altered by ZA treatment (�P< 0.05). Data are presented as mean� SEM, n¼ 8/gp (T/C)

treatment/control.
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osteogenesis needs to be more thoroughly investigated. It is known

that angiogenesis and bone formation are intrinsically linked during

bone development [Wang et al., 2007] and repair [Wan et al., 2008].

Osteoclasts actively participate in this process, excavating the

marrow cavity, while sinusoids establish this unique type of bone

microcirculation [Bianco, 2011]. Although biological evidence is

observed in the bone coupling with endothelial cells [Parfitt, 2000],

the formation and modulation of the vasculature linked with bone

modeling and the effects of stimulators (hormones, drugs and

mechanical loading) that affect its microstructure are relatively

unexplored. Studies in mechanical loading, demonstrated that bone

angiogenesis was accompanied with bone gain in running rats [Yao

et al., 2004] and VEGF was the mechanism driving both effects.

Recently, an interesting study demonstrated that intermittent

parathyroid hormone (PTH) induced vascular endothelial growth

factor (VEGF A) production that mediated PTH anabolic response

[Prisby et al., 2011]. PTH treated mice had fewer blood vessel

numbers and relocated existing blood vessels near to new bone

formation sites. Interestingly, ZA treatment decreased the circulat-

ing levels of VEGF in cancer patients with bone metastasis [Santini

et al., 2003] but their effects on the bone vasculature were not

determined.

In this study, we observed the expected increase in bone mass, but

we also investigated the changes that occur in the vasculature of

mice treated with ZA. To this end, perfusion of a radiopaque microfil

was performed to visualize and quantify changes in the vasculature

volume and vessel numbers. Interestingly, young mice (4 week old)

treated with ZA had no alteration in overall vessel volume but had

increased vessel numbers that were smaller and accumulated

between the augmented trabecular areas in the metaphysis. This

finding lead us to further investigate if the changes in the bone niche

(both endosteal and vascular) microstructures contributed to the

increased LSK numbers. Because the experiments were performed in

young (4week old) mice where bone is highly active, we also

performed experiments in adult (4 month old) mice. Similar to the

young mice, LSK cells and bone mass were significantly increased

after 4 week treatment with ZA but surprisingly vessel numbers and

volumes were not changed in the adult mice. The increase in bone

vessel numbers in the young model but not in the adult mice

suggests that ZA may act differently depending on the age and bone

activity. Moreover, the fact that ZA is a known antiangiogenic

factor, but did not reduce vessel number or volume in bone raises

interesting questions regarding the mechanisms by which bone

angiogenesis occurs and how important their interdependency is

with bone modulation and activity. Further studies are necessary to

fully elucidate bone angiogenesis and its contribution to the bone

microenvironment. Collectively, the findings suggest that ZA

indirectly supports the osteoblastic niche and that the vasculature

Fig. 7. Gene expression analyses of bone marrow sorted cells: lineage negative (A,B), lineage positive (C), and unsorted total bone marrow cells (D). Bone marrow cells of

4-week-old mice treated with ZA for 4 weeks were sorted into Lin� and Linþ cells by magnetic cell sorting beads (MACS) and gene expression analyzed by qPCR. (A) Lineage

negative cells had increased expression of BMP2, BMP6, BMi1, Tie2, Notch1, but no alteration of Ink4a, in mice treated with ZA versus vehicle (VEH) control. (B) Lineage

negative cells were also analyzed for calcium related genes. Cam1 and ClCa1 were decreased with ZA. (C) Lineage positive cells had decreased gene expression for BMP6 but no

significant changes were observed in Bmi1, Tie2, Notch1, Ink4a, and Flt3. (D) Total bone marrow cells had decrease gene expression of OCN and VCAM1 genes (�P< 0.05,
��p,0.005). Data are presented as mean� SEM, n¼ 5/gp.
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niche may not be a key player in the augmented LSK population in

bone.

To account for an increase of LSK in the marrow, the present

study sought to determine whether ZA would affect other cell types

in the bone marrow. Analysis of hematopoietic CD41þcells revealed
similar levels between ZA and VEH. Moreover, investigation of

different LSK populations was performed to determine whether ZA

inhibited cell commitment that could account for the increased

population in the bone marrow. Indeed, short-term lymphocytic

reconstituting LSK Flt3þ cells were increased with ZA treatment.

Lymperi et al. [2011] demonstrated that inhibition of osteoclastic

resorption with alendronate treatment resulted in expansion of

hematopoietic progenitor cells (LSK) but with a decrease in the

absolute number of LSK Flt3�HSCs and long-term culture-initiating

cells in the bone marrow. However, alendronate is a second

generation bisphosphonate with a lower efficacy of osteoclast

inhibition than ZA.

Gene expression of Lin� sorted cells demonstrated that Bmi1

and Tie2, related with HSC self-renewal [Arai et al., 2004; Rizo

et al., 2008], were both increased, suggesting that hematopoietic

progenitor cells are acquiring self-renewal capacity. Interestingly,

BMP2 and BMP6 were both augmented with ZA treatment in Lin

negative cells. Jung et al. [2008] demonstrated that hematopoietic

stem cells participate in bone formation and niche activity with

secretion of BMP2 and BMP6. Later, a role of erythropoietin for

BMP2 and BMP6 production was reported [Shiozawa et al., 2010].

Indeed, the endosteal niche is expanded with ZA treatment and

hematopoietic progenitor cell could be actively participating in the

bone formation. It is possible that as osteoclasts are compromised

with ZA treatment their coupling factors to stimulate osteoblasts

(e.g., ephrins)are compromised and HPCs are serving to compensate.

Notch 1, a receptor for ligand Jagged 1 expressed by osteoblasts, was

also increased and is involved in the expansion of the HSC pool in

vivo [Calvi et al., 2003].

Altogether, accordingly with increased endosteal niches and

increased LSKs, our data suggest that ZA indirectly supports the

osteoblastic niche LSK expansion that occurs independent of the

vascular niche. Moreover, ZA has a differential response in the

vasculature modulation in young and adult mice, suggesting that

age and bone activity may be significant factors defining the

vasculature modulation in bone.
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